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SUMMARY

Mobile genetic elements (MGEs) contribute to
bacterial adaptation and evolution; however, high-
throughput, unbiased MGE detection remains chal-
lenging. We describe MGEfinder, a bioinformatic
toolbox that identifies integrative MGEs and their
insertion sites by using short-read sequencing data.
MGEfinder identifies the genomic site of each MGE
insertion and infers the identity of the inserted
sequence.We apply MGEfinder to 12,374 sequenced
isolates of 9 prevalent bacterial pathogens, includ-
ing Mycobacterium tuberculosis, Staphylococcus
aureus, and Escherichia coli, and identify thousands
of MGEs, including candidate insertion sequences,
conjugative transposons, and prophage elements.
The MGE repertoire and insertion rates vary across
species, and integration sites often cluster near
genes related to antibiotic resistance, virulence, and
pathogenicity. MGE insertions likely contribute to
antibiotic resistance in laboratory experiments and
clinical isolates.Additionally,we identified thousands
of mobility genes, a subset of which have unknown
function opening avenues for exploration. Future
application of MGEfinder to commensal bacteria will
further illuminate bacterial adaptation and evolution.

INTRODUCTION

Successful human pathogens can acquire adaptive phenotypes,

such as antibiotic resistance, through single nucleotide polymor-

phisms (SNPs), small insertions and deletions (indels), inver-

sions, duplications, and the movement of mobile genetic ele-

ments (MGEs). Prokaryotic MGEs, such as insertion sequence

(IS) elements, transposons, integrons, plasmids, and bacterio-

phages (Stokes and Gillings, 2011; Rankin et al., 2011) can

mobilize and integrate in a site-specific or non-specific manner

throughout the host genome.

MGEs can range in size from small elements, such as miniature

inverted repeat transposable elements (MITEs), which are on the
Ce
order of tens of base pairs (bps) in length, to prophages and trans-

posons, which can be tens or hundreds of kilobase pairs (kbps) in

length. Among the most well-studied integrative mobile elements

are IS elements, relatively simple MGEs coding for only the trans-

posase necessary for their transposition (Mahillon and Chandler,

1998). IS elements can transpose into genes, resulting in inser-

tional mutagenesis and loss of function of the gene (Lerat and

Ochman, 2004); alternatively, they can transpose into gene regu-

latory elements and influence expression of neighboring genes.

Several tools exist to identify MGE insertions. For example,

whole-genome alignment tools, such asMauve, can identify large

insertions, also known as ‘‘genomic islands’’ (Darling et al., 2010;

Bertelli et al., 2017). Other tools focus on IS elements in particular

(Barrick et al., 2014; Lerat, 2010; Xie and Tang, 2017; Treepong

et al., 2018; Jiang et al., 2015; Adams et al., 2016; Biswas et al.,

2015; Hawkey et al., 2015) because their repetitive nature makes

it unlikely for them to properly assemble in a draft assembly (see

Table S3). Although these tools are useful, approaches based

on whole-genome alignment fail to identify insertions of repetitive

elements in draft genomes, and existing tools for identifying repet-

itive element insertions usually depend on homology with known

MGEs or require well-annotated reference genomes. To our

knowledge, few tools exist that can identify awide range ofmobile

element insertions, both repetitive and non-repetitive, without

relying on an external database of known elements.

Here, we develop and validate a computational toolbox that

identifies complete MGEs and their insertion sites with respect

to a reference genome from short-read sequencing data. Our

workflow can reliably detect elements from as small as 70

base pairs (bps) in length to as large as hundreds of kbps. We

use this approach to analyze 12,374 sequenced isolates of 9

pathogenic bacterial species and find large differences in the

overall MGE repertoire and the rate of MGE insertion between

species. By analyzing the location and genetic content of these

elements, we infer their potential role in clinically relevant biolog-

ical pathways, such as antibiotic resistance.
RESULTS

A Flexible Approach to Identify and Genotype MGE
Insertions
We sought to develop a tool that would overcome the limitations

of whole-genome alignment and homology-based approaches
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to identify both repetitive and non-repetitive insertions ranging

from 70 bps to 200 kbp in length, as well as their genomic

position with respect to a reference genome. Our approach

can identify such insertions without the need for a complete

genome assembly or a database of known elements. Using

this bioinformatic toolbox, which we call MGEfinder, we

analyzed 12,374 publicly available sequenced isolates of nine

bacterial pathogens: Acinetobacter baumannii, Enterococcus

faecium, Escherichia coli, Klebsiella pneumoniae, Mycobacte-

rium tuberculosis,Neisseria gonorrhoeae,Neisseriameningitidis,

Pseudomonas aeruginosa, and Staphylococcus aureus.

First, MGEfinder aligns short reads from isolates of a given

species to a reference genome of that species (Figure 1A). The

choice of reference genome is important because the sequence

similarity of the reference genome and the isolate affect the

sensitivity and precision of insertion detection (Figures S2A

and S2B). In our analysis, we required isolates to share at least

98.5% nucleotide identity with the reference genome. Second,

candidate insertion sites were identified by searching the align-

ments for reads that have clipped (unaligned) ends at the same

genomic site. A read with a clipped end indicates the site where

the inserted element begins with respect to the reference

genome used, and the clipped ends are then used to build a

consensus sequence of the terminal end (or terminus) of the

insertion. Third, these high-quality terminal ends were paired

with nearby oppositely oriented terminal ends to identify candi-

date insertions. Fourth, the genome of each bacterial isolate

was then assembled to produce a draft assembly, candidate

insertion termini were aligned back to the draft assembly, and

the full inserted sequence was inferred from the alignments.

Finally, a database of all inserted elements identified across all

analyzed isolates was dynamically constructed, and we per-

formed a final sequence inference step of all terminal end pairs

by aligning to this accumulated database. By combining several

inference approaches (Figures 1B and S1A–F), MGEfinder in-

creases the overall sensitivity and confidence in the accuracy

of the inferred sequence.

We compared MGEfinder with panISa, a tool that uses a

similar approach to identify insertion junctions and build

consensus sequences of insertion termini (Treepong et al.,

2018), and progressiveMauve (Darling et al., 2010), a whole-

genome alignment tool commonly used to identify genomic

islands (Bertelli et al., 2017). We found that MGEfinder is more

sensitive and has a lower overall false-positive rate than panISa

(Figures S2E and S2H). We found that, compared with progres-

siveMauve,MGEfinder ismuchmore sensitive to the detection of

repetitive sequences inserted into the genome when using draft

assemblies, which are much less contiguous than complete

reference genomes, and sensitivity is further improved when

using a dynamically constructed database of MGEs found

across isolates (Figure S2I). Additionally, MGEfinder is better at

identifying the precise boundaries of the inserted element than

progressiveMauve (Figure S2J).

Characterizing the Integrative MGE Repertoire of Nine
Bacterial Pathogens
We ran MGEfinder on 1,848 E. faecium, 1,646 A. baumannii,

1,570 S. aureus, 1,378 M. tuberculosis, 1,361 K. pneumoniae,

1,348 P. aeruginosa, 1,306 N. meningitidis, 1,026 E. coli, and
2 Cell Host & Microbe 27, 1–14, January 8, 2020
891N. gonorrhoeae isolates.We limited our analysis toMGEsbe-

tween 70 bp to 200 kbp in size and that generated a target site

duplication of 20 bp or less. We identified 5,019 unique element

clusters (clustered by 90% identity across 85% of each

sequence) across all species analyzed (Figure 1C; Table S5).

We observed significant differences in the distribution and

composition of each species’ putative MGE repertoire; for

example, N. gonorrhoeae and M. tuberculosis were noticeably

depleted of elements above 10 kbps in length (Figure 1C). We

classified inserted elements into 11 categories, including IS

elements (8.9% of all identified elements) (see Figure S3 for IS

families), plasmids (0.4%), intact prophages (15.8%), question-

able and/or incomplete prophages (6.1%), elementswith a trans-

posase and other predicted coding sequence (CDS) (20.4%),

elements containing a protein with a predicted Group II intron

domain (1.1%), elements containing a predicted serine or tyro-

sine recombinase (10.4%), elements with at least one CDS and

terminal inverted repeats (TIRs) (3.4%), elements without any

predicted CDS with TIRs (2.4%), elements with at least one pre-

dicted CDS but no TIR or transposase (19.1%), and elements

without any of the previous annotations (‘‘No CDS’’; 12%) (see

Figure S1E for schematic representation of categories). Addition-

ally, 178 (3.5%) of these elements contain predicted conjugation

systems, and 100 of these elements also contained transpo-

sases, indicating that additional classes of elements such as

conjugative transposons exist in this collection.

To assess ‘‘transposability,’’ we next counted the number of

times we observed a given sequence element inserted at different

loci across the reference genome (Figure 2A). We found that

E. coli, P. aeruginosa, and A. baumannii had the highest number

of highly transposableMGEs (elements found at > 10 genomic po-

sitions): 54 such elements in E. coli, 44 in A. baumannii, and 43 in

P. aeruginosa.N. gonorrhoeaewas on the opposite extreme: only

one element was detected at > 10 positions, a correia repeat-

enclosed element (CREE), which is a small non-autonomous

MGE described previously (Liu et al., 2002). Among all MGEs,

wedefine a transposable element (TE) as an element cluster found

at more than three positions in the reference genome in sum

across all analyzed isolates. In total, 516 elements were classified

as TEs (10.3%). These differences across species suggest signif-

icant variability in MGE diversity and overall activity.

Different classes of putative MGEs vary considerably in their

levels of transposability (Figure 2B). As expected, predicted IS

elements are typically among the most transposable within

each species, comprising 65.3% of all elements found at more

than 10 loci. In E. coli and P. aeruginosa, several phage elements

are highly transposable, and in N. gonorrhoeae, non-autono-

mousMITE elements are highly transposable. Less transposable

elements are often categorized as ‘‘Contains CDS’’ and ‘‘No

CDS,’’ supporting the possibility that these types of elements

are site-specific, less active in the population overall, or potential

false positives.

We define a ‘‘unique insertion’’ as an insertion event of a single

element at a single insertion site. In each of the species studied

here, the elements responsible for themost unique insertions are

IS elements, with the exception of the non-autonomous CREE

element in N. gonorrhoeae and N. meningitidis (Figure S5C). As

more isolates are analyzed, more unique insertions attributable

to TEs are identified, but the rate of increase varies from species
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Figure 1. An Approach to Identify a Variety of Integrative MGEs from Short-Read Sequencing Data

(A) MGEfinder workflow schematic. See main text and STARMethods for details of each step. See Figure S2 for MGEfinder performance metrics. Abbreviation is

as follows: TSD, target site duplication.

(B) The proportion of elements identified by each inferencemethod for the downloaded isolates of nine bacterial pathogens. See STARMethods and Figure S1 for

description of each inference technique and how ambiguous insertions were resolved.

(C) An analysis of the types of elements identified in theMGEfinder workflow when applied to nine bacterial pathogens; element length is on the x axis (log-scale),

and element count is on the y axis. A ‘‘unique element’’ refers to a unique cluster of elements (see STAR Methods for details). See Figure S1E for a schematic

representation of each type of element. See Figure S3 for identified IS families. Abbreviations are as follows: IS, insertion sequence; CDS, coding sequence; TIR,

terminal inverted repeat.
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to species (Figure 2C). E. coli, with 5,883 unique TE insertions

identified after analyzing 1,026 isolates, is on the high end of

the distribution, suggesting that MGE transposition is relatively

common in this species. In contrast, only 28 unique TE insertions

were detected in N. gonorrhoeae across all 891 analyzed iso-
lates, suggesting that TE insertions might not be a common

source of mutation for this species. We also generated accumu-

lation curves for the number of unique sequence elements within

each MGE category, and in many cases across species, certain

MGE categories appear to be nearly saturated, indicating that
Cell Host & Microbe 27, 1–14, January 8, 2020 3
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(A) The number of unique sequence elements identified, binned by species and total unique insertion sites per element. ‘‘Total unique insertion sites’’ refers to the

number of unique sites where members of a given element cluster can be found across all isolates for each species.
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(C) An accumulation curve of the number of new TE insertions identified as additional isolates are analyzed. See also Figure S4.

(D) Notched boxplots of the number of rare TE insertions detected across all samples for each species. A rare TE insertion is defined as a TE insertion identified

in < 1% of all samples. Rare insertions are adjusted by the number of genomic sites in the sequenced isolates with non-zero coverage, and then multiplied by 1
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further isolate collection would not substantially increase the

number of detected integrative MGEs (Figure S4). For example,

the number of detected A. baumannii intact phage elements ap-

pears to plateau at �50 elements, and the slope of increase is

quite small near the end of the curve. This differs considerably

from the number of intact phage elements detected in E. coli,

which maintains a high slope of increase even after analyzing

1,000 isolates. These accumulation curves do not, however, ac-

count for differences in genome size across species, which likely

partially explains differences in the rate of insertion.
4 Cell Host & Microbe 27, 1–14, January 8, 2020
To adjust for genome size, we analyzed the number of rare TE

insertions (those with allele frequency < 0.01 in the population)

per megabase for each isolate (Figure 2D). By analyzing only

rare TE insertions, our goal is to approximate the relative rate

of insertion across isolates and species. E. faecium has the high-

est number of rare TE insertions per megabase and has a mean

of 2.44 (95% confidence interval [CI], 2.32–2.56) across all

analyzed samples, whereas N. gonorrhoeae and P. aeruginosa

have means of 0.02 (95% CI, 0.01–0.03) and 0.26 (95% CI,

0.23–0.29), respectively. The number of rare TE insertions is
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higher in intergenic regions than in predicted coding sequences

(Figure S5A). Realizing that the differences in mutation rate

here could simply reflect differences in genetic diversity or

sequencing quality across analyzed isolates, we further interro-

gated this possibility by using ANOVA. The average pairwise

average nucleotide identity (ANI) of each isolate to all other sam-

ples explains 3.1% of the variance in the number of detected

rare TE insertions (p < 2e�16), whereas species explains

16.3% (p < 2e�16), and sequencing library fragment length ex-

plains 0.8% (p = 9.8e�11). E. faecium has the highest number

of rare TE insertions despite being the third most genetically

homogeneous species (Figure S5B). This suggests that genetic

diversity and sequencing artifacts influence our estimates, but

characteristics intrinsic to the species itself have a much larger

effect on the number of TE insertions. Here, we see that the num-

ber of TE insertions continues to increase as more isolates are

analyzed and estimates for the relative rate of insertion vary

considerably across species even when correcting for genetic

diversity. These estimates can inform future efforts to sequence

and analyze additional pathogenic isolates belonging to these

species.

CharacterizingMGE Passenger Proteins and Prophages
In our previous analyses, we have focused on MGEs primarily at

the nucleotide level, but we can also characterizeMGEs by using

a gene-centric approach. Using predicted CDS regions, we clus-

tered all protein sequences across species at 50% identity. This

resulted in a total of 27,718 unique gene clusters across all 9 spe-

cies.We then filtered these gene clusters to only those appearing

at over 10 unique insertion sites across all species, which re-

sulted in a list of 1,239 high-confidence ‘‘mobility gene’’ clusters

(Figure 3A). Predicted transposases make up 18.7% of these

mobility genes and 37.3% of genes appearing at over 100

genomic locations. Phage-associated and conjugation system

proteins make up 43% and 4.4% of all mobility genes, respec-

tively. A further 20.2% of mobility genes have no annotated

function when using Prokka or common mobility gene hidden

Markov models (HMMs), including 5 such genes that appear at

over 100 genomic locations in S. aureus. Further investigating

mobility genes of unknown function might lead to the discovery

of new genes important for DNA mobility and horizontal gene

transfer.

This curated list of mobility genes can be further used to char-

acterize elements in greater detail. Of the 5,019 elements found

across all species, 2,584 (51.4%) contain at least one mobility

gene, and an additional 1,440 (28.6%) share high nucleotide

BLAST similarity (e value < 1e�4) with an element that contains

a mobility gene, meaning 80.2% of identified elements bear

some genetic relationship to this curated set of mobility genes.

In total, 61.5% of poorly characterized elements (Contains

CDS + TIR, NoCDS + TIR, Contains CDS, and NoCDS elements)

contain mobility genes or are homologous to other elements

containing mobility genes; up to 83.6% of poorly characterized

in S. aureus elements met these criteria (Figure 3B). In the case

of M. tuberculosis, very few elements met these criteria, and

this might be because M. tuberculosis is the only member of

the Actinobacteria phylum that we analyzed. Including more

species from this phylum in the future will likely improve our abil-

ity to characterize themobile elements belonging to this species.
Several elements contain known antibiotic resistance genes

as annotated by ResFinder (Zankari et al., 2012) (Table S1). We

detect resistance to ‘‘drugs of last resort’’ encoded on MGEs.

For example, the resistance gene vanHBX, which confers resis-

tance to vancomycin, is found in four different MGEs in

E. faecium; in another example, carbapenem-hydrolyzing beta-

lactamases blaKPC-2 and blaKPC-3 are found in two different

MGEs in K. pneumoniae. In addition to antibiotic resistance

genes, MGEs contain other genetic ‘‘cargo’’ that are thought to

benefit the bacterial host, such as streptomycin 30-adenylyl-
transferases, colicin V secretion proteins, bicyclomycin resis-

tance proteins, genes involved in copper resistance (cation efflux

pumps and copper resistance proteins copA, copB, copD, and

copR) (Hamlett et al., 1992), and those involved in restriction

modification systems (hsdR and hsdM) (Murray et al., 1982) (Fig-

ure 3C and 3D). In summary, our workflow identified MGEs

containing passenger proteins of known and unknown function,

shedding light on the phenotypic changes that likely accompany

these insertion events.

Although a subset of these identified elements is likely trans-

ferred between hosts through conjugative mechanisms as

naked DNA, other elements might be encoded by and trans-

ferred through phages. Using PHASTER, a previously described

tool that identifies candidate prophages on the basis of input

DNA sequence (Arndt et al., 2016), we identified 792 ‘‘Intact

Phage’’ sequence clusters. Many identified phage element

clusters correspond to a single record in the PHASTER

database. For example, in E. coli we find that 55 site-specific

phage elements are similar to Enterobacteria phage Fels-2

(NC_010463.1), a 33 kbp phage first identified in Salmonella

enterica serovar Typhimurium. The average pairwise nucleotide

identity between these Fels-2-like phage clusters is 96.4%, and

an average of 82.9% of bases are aligned, suggesting the Fels-

2-like phages that integrate at this site are genetically diverse.

Analyzing the protein sequences found in these phages, we

identify 19 core proteins (present in at least 90% of these

phages), and 112 accessory proteins (present in less than

90% of phages). One of these accessory proteins is beta-lacta-

mase CTX-M-97, indicating that this particular antibiotic resis-

tance gene might have entered the cell by way of this phage

and that these phages are a valuable source of novel genetic

material. Carefully characterizing these integrative phage ele-

ments by using the MGEfinder workflow can help to understand

the role phages play in horizontal gene transfer across different

species.

Analysis of Insertion-Enriched Sites Reveals Their Role
in Microbial Adaptation
The approach we have taken allows us to not only identify MGEs,

but it also identifies their sites of insertion with respect to the

reference genome. This allows us to investigate the role MGEs

play in genomic evolution, identifying sites that are enriched for

unique insertions (insertion-enriched sites) that might indicate

functionally important genes and pathways. We performed an

analysis of TE-insertion-enriched sites by using all unique TE

insertions in each species analyzed (Figure 4A). With the

exception ofN. gonorrhoeae, which had too few unique TE inser-

tions to analyze, we identified several TE-insertion-enriched

sites for all species, and 654 were identified in total (false
Cell Host & Microbe 27, 1–14, January 8, 2020 5
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Figure 3. Many Identified MGEs Include Passenger Genes, Some of Which Are Largely Uncharacterized

(A) Mobility genes identified when analyzing coding sequences found in mobile elements across species. Mobility genes are grouped into those found at >10 or

>100 unique insertion sites. See STAR Methods for description of each term in the legend.

(B) Bar plots depict the number of elements falling in the four lowest-confidence element categories: ‘‘Contains CDS,’’ ‘‘Contains CDS + TIR,’’ ‘‘No CDS,’’ and ‘‘No

CDS + TIR.’’ In each category, the proportion of elements with a predicted mobility gene (purple), no predicted mobility gene but high BLAST similarity to another

element with amobility gene (blue), and all other elements (gray) are indicated. Percentages on the top of the bars indicate the percentage of elements in each bin

falling in the purple or blue categories.

(C) The number of unique insertion sites identified where a mobile element containing each labeled passenger protein was found. Shown are only proteins

that occur on MGEs that contain at least one predicted transposase. Ties in the number of unique sites generally indicates the passenger proteins are on

the same element.

(D) Two examples of mobile elements carrying passenger proteins: (1) a copper resistance mobile element found in E. coli; (2) a mobile element containing a beta-

lactamase found in S. aureus. Yellow rectangles represent coding sequences with predicted transposase activity; purple rectangles represent all other predicted

coding sequences.
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Figure 4. MGE-Insertion-Enriched Sites Occur near Functionally Important Genes and Pathways

(A) An analysis of MGE-insertion-enriched sites found on each species’ chromosome. Insertion-enriched sites were assigned to coding sequences by choosing

the coding sequence closest to the center of each insertion-enriched site. All insertion-enriched sites meeting FDR < 0.05 are indicated with the colored points.

The 15 most significant insertion-enriched sites associated with well-annotated coding sequences are shown in the text labels. The insertion-enriched site is

shown to be upstream (blue), within (red), or downstream of the nearest coding sequence (green). p values were calculated using a one-sided exact poisson test.

(B) GO enrichment analysis of predicted coding sequences near MGE-insertion-enriched sites. All coding sequences near significant insertion-enriched sites

were tested for enrichment of each GO term by using a hypergeometric test; all 44 significantly enriched GO terms are presented.

Please cite this article in press as: Durrant et al., A Bioinformatic Analysis of Integrative Mobile Genetic Elements Highlights Their Role in Bacterial
Adaptation, Cell Host & Microbe (2019), https://doi.org/10.1016/j.chom.2019.10.022
discovery rate [FDR] % 0.05) (Table S6). We find that 227 of the

insertion-enriched sites appear to directly overlap with predicted

coding sequences, indicating loss-of-function for the disrupted
gene. Interestingly, 192 are upstream of the nearest gene, and

235 are downstream, which makes the functional consequence

of these insertions more difficult to predict.
Cell Host & Microbe 27, 1–14, January 8, 2020 7
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Figure 5. An Analysis ofMGE Insertion Sites

Reveals Their Target Site Specificity

Examples of target-sequence motifs identified for

five different MGEs with high target-sequence

specificity. ‘‘# Targets’’ refers to the number of

unique insertion sites analyzed for each MGE. ‘‘%

Targets’’ indicates the percentage of target sites

containing the motif. ‘‘% BG’’ indicates the per-

centage of randomly chosen background se-

quences containing the motif. p values shown

were calculated directly by the HOMER motif

analysis software.
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Next, we sought to identify genes that are frequently near TE

insertion-enriched sites both within and across species (Table

S2). The gene acrR, a drug efflux pump repressor, is adjacent

to significant insertion-enriched sites in K. pneumoniae and

A. baumannii, and a nominally significant insertion-enriched site

in E. coli (uncorrected p = 5.2e�4; FDR-adjusted p = 0.14), indi-

cating that disruption of this drug efflux pump repressor by

MGE insertions is an adaptive strategy shared across multiple

species. Hok/sok components are frequently targeted by unique

MGE insertions in E. coli and K. pneumoniae, which indicates

that disruption of these toxin-antitoxin systems by MGE insertion

might be a common adaptive strategy in both of these species

(Hayes 2003). Several transposases themselves are near MGE-

insertion-enriched sites in E. faecium, indicating that these

regions are already disrupted by nearby IS insertions in the refer-

ence genome, or that existing IS elements are frequently disrup-

ted by TE insertions. Other genes repeatedly located near inser-

tion-enriched sites include outer membrane porins ompC,

ompN, ompF, and yedS; cold shock proteins cspD and cspLA;

and general stress protein glsB, among others. Considering the

repeated targeting of these homologous genes by unique TE in-

sertions both within and across species, they are likely good

candidate genes to investigate further for functional and adaptive

significance.

To determine what types of genes are adjacent to significant

insertion-enriched sites, we performed a Gene Ontology (GO)

enrichment analysis of all genes near these sites. In this analysis,

we identified 44 GO term pathways enriched near these sites

(FDR % 0.05) (Figure 4B; Table S6). Several of these enriched

pathways are clearly associated with antibiotic resistance,

including ‘‘pore complex’’ in K. pneumoniae, ‘‘porin activity’’ in

K. pneumoniae and E. coli, both ‘‘efflux transmembrane trans-

porter activity’’ and ‘‘drug transmembrane transporter activity’’

in E. coli, and ‘‘beta-lactamase activity’’ in A. baumannii. Other

enriched pathways are associated with host infection and

virulence, including ‘‘siderophore transport’’ in A. baumannii,

‘‘fimbrial usher porin activity’’ in E. coli, ‘‘pilus assembly’’ in

E. coli, and ‘‘pathogenesis’’ in P. aeruginosa. However, the

most significantly enriched pathway is diguanylate cyclase activ-

ity in A. baumannii (hypergeometric test; p = 4.5e�9), which is

driven by insertion-enriched sites near response regulator

pleD, diguanylate cyclase dgcN, and two homologs of diguany-

late cyclase dgcM. Previous research suggests that disruption of
8 Cell Host & Microbe 27, 1–14, January 8, 2020
this pathway might influence biofilm formation (Sarenko et al.,

2017). Altogether, these results suggest that insertion-enriched

sites in these populations of pathogenic isolates might specif-

ically modulate cellular functions such as antibiotic resistance,

virulence, pathogenesis, and biofilm formation across species.

Finally, we analyzed the sequence context of unique MGE in-

sertions to determine their target-site specificity. Using HOMER

(Heinz et al., 2010), a motif analysis software, we identified 63 el-

ements that have significant target sequence motifs (p < 1e�11)

(Table S6). Motifs for five MGEs with particularly high target

sequence specificity are highlighted in Figure 5. Seven elements

have similar (>70%pairwise similarity) CTAG target-sitemotifs, a

motif that has been described previously for other IS elements

(Fournier et al., 1993). The highly specific 12-base motif

identified for ISPa11 corresponds with previous studies demon-

strating that this element targets repetitive extragenic palin-

dromic (REP) sequences throughout the genome (Tobes and

Pareja, 2006). When we search for this 12-base motif throughout

the P. aeruginosa reference genome, 32% of all matching motifs

are occupied by an MGE insertion in at least one isolate, with

0.31 sites occupied per isolate on average, and a maximum of

6 sites occupied in 2 separate isolates. The target sequence

specificity of the MGEs described here might be of interest to

the field of genome engineering. In summary, regions frequently

disrupted by unique (convergent) MGE insertions are associated

with important biological functions such as antibiotic resistance,

and by analyzing these regions we can determine the target-site

specificity of these MGEs.

MGE Insertions Likely Contribute to Antibiotic
Resistance in Laboratory Evolution Experiments
and in Clinical Isolates
To definitively demonstrate a role for MGEs in evolution,

orthogonal experimental approaches are necessary. Adaptive

laboratory evolution (ALE) experiments are powerful tools to un-

derstand how drug resistance emerges. Given that our approach

can be used to analyze MGE insertions in an experimental

context from short-read sequencing data, we sought to deter-

mine how frequently MGE insertions contribute to antibiotic

resistance in a controlled laboratory experiment. Studies have

shown in laboratory grown E. coli that the rate of IS insertion is

about one-third the rate of point mutation, but it is unclear how

frequently these mutations would actually affect gene function



CHL DOX

m
df

A
ac

rR
ac

rB
m

ar
R
om

pR ro
b

isr
C

rp
lD

sly
A

ac
rR

m
ar

R lon fis
lpx

M
m

an
Y

rp
oB

ye
dX

yh
dE

0

1

2

3

4

5

0

2

4

6

In
de

pe
nd

en
t m

ut
at

io
n 

ev
en

ts

A

3000 300 0 30 3000 3 0 0 3000

[Trimethoprim], MIC units

Inoculation Site
No IS Insertions
1 IS Insertion
2 IS Insertions

Non-mutator
Mutator

B C

0

10

20

50

fol
A
m

ar
R
ar

oK pit
A
ac

rR
m

gr
B lon

so
xR rn

g
tu

fA
se

lA
ph

oQ
de

oB fsa
m

ar
A

flh
D
rz

pR
ss

pA fol
E
pu

tP
rp

oB
se

rS
gs

hA
ye

aRyd
jN

ye
iL

In
de

pe
nd

en
t m

ut
at

io
n 

ev
en

ts

Mutation Type

IS Insertion
Point Mutations/
Short Indels

Figure 6. MGE Insertions Contribute to Antibiotic Resistance in Adaptive Laboratory Evolution Experiments

(A) A schematic representation of the intermediate-step trimethoprim megaplate experiment conducted by Baym et al. (2016), demonstrating the MGE insertion

count in each sequenced isolate collected from the noted position on the megaplate. See also Figure S6.

(B) The number of independent mutation events assumed to affect each gene listed in the intermediate-step megaplate experiment conducted by Baym et al.

(2016). The number of independent mutations is grouped according to mechanism: black, by MGE insertion; gray, by point mutations or short indels. This

visualization includes MGE insertions affecting a gene only once (yeiL, ydjN, gshA, and yeaR) and excludes all point mutations/short indels affecting a gene

only once.

(C) An analysis of the results of the chloramphenicol (CHL) and doxycycline (DOX) morbidostat experiment conducted by Toprak et al. (2011), supplemented with

IS insertion information. The legend in (B) also applies to (C).
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given that they seem to selectively target intergenic regions (Lee

et al., 2016). Using theMGEfinder workflow, we re-analyzed data

from two ALE experiments investigating the mechanisms by

which E. coli adapts to prolonged exposure to antibiotics. These

included the megaplate experiment conducted by Baym et al.

(2016), and the morbidostat experiment conducted by Toprak

et al. (2011).

We first analyzed the whole-genome sequencing (WGS) data

collected by Baym et al. (2016), a study that introduced themeg-

aplate as a means of visually observing a migrating bacterial

front across a landscape of varying antibiotic concentrations

(Baym et al., 2016). We found that MGE insertions played a sig-

nificant role as a source of adaptive loss-of-function mutations.
Among all sequenced isolates in the intermediate-step trimetho-

prim (TMP) experiment, we identified 35 independent IS inser-

tions (Figures 6A, 6B, and S6; Table S7). Most of these insertions

disrupted genes that were also found to be mutated by SNPs

and indels in the originally reported study, including acrR,

aroK, pitA, mgrB, tufA, and rng. Other genes disrupted by IS

insertion were not reported in the original study. In comparison

to the adaptive SNP and indel mutations originally reported for

the TMP experiment, insertion sequences account for 17.6%

(95% CI, 12.0%–23.2%) more adaptive mutations (defined as

themutations occurring in genes that aremutated independently

at least twice) and 24.8% (95%CI, 17.2%–32.4%) when folA (the

direct target of TMP) substitutions and indels are excluded.
Cell Host & Microbe 27, 1–14, January 8, 2020 9



Figure 7. MGE Insertions Disrupt Known Antibiotic Resistance Genes in Clinical Isolates

(A) An analysis of MGE-insertion-enriched sites for two collections of clinical E. coli isolates. The third graph is the same as the E. coli graph shown in Figure 4A

(insertion-enriched site analysis on randomly downloaded E. coli isolates from SRA), highlighting the insertion-enriched sites shared with either of the clinical

isolate collections. See also Figure S7.

(B) Unique acrR MGE insertions found in the Hospital collection, the MDR collection, and the randomly downloaded E. coli isolates from the SRA database.

(C) All unique ompF MGE insertions found in the same three isolate collections.

Please cite this article in press as: Durrant et al., A Bioinformatic Analysis of Integrative Mobile Genetic Elements Highlights Their Role in Bacterial
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Next, we analyzed the WGS data generated by Toprak et al.,

2011, where they introduced the morbidostat, a selection device

that continuously monitors bacterial growth and dynamically reg-

ulates drug concentrations to constantly challenge the bacterial

population (Toprak et al., 2011). Toprak et al., 2011 treated

drug-sensitive MG1655 E. coli with chloramphenicol (CHL),

doxycycline (DOX), and TMP and performed whole-genome

sequencing on 5 independently treated cultures. When consid-

ering only themutated genes that were originally reported by Top-

rak et al., IS insertions caused 11 out of 25 (44%) and 8 out of 19

(42%) of the antibiotic resistance mutations detected in the CHL-

and DOX-treated populations, respectively (Figure 6C). In the

originally reported results for this study, two independent

nonsense mutations were identified in the acrR gene across the

ten CHL and DOX samples. When accounting for IS insertions,

all ten CHL- and DOX-treated populations had a disrupted acrR

gene, suggesting that acrR disruption is a strong contributor to

CHL and DOX resistance in the context of thismorbidostat exper-

iment. This shows that IS insertions are key mutations that confer

antibiotic resistance and that their inclusion in the analysis of such

experiments is critical to form a more complete understanding of

mechanisms of adaptation.

Although these in vitro findings suggest that MGE insertions

contribute to antibiotic resistance, we also wanted to determine

whether MGE insertions associated with antibiotic resistance

also occur in clinical isolates. To address this directly, we chose

to analyze two collections of clinical E. coli isolates with available

antibiotic resistance phenotype information. The first is a collec-

tion of 241 E. coli bacteremia isolates previously investigated in a

bacterial genome-wide association study (GWAS) (Stoesser

et al., 2013; Earle et al., 2016). This collection was obtained

from patients at the Oxford University Hospitals NHS Trust,
10 Cell Host & Microbe 27, 1–14, January 8, 2020
and will be referred to as the ‘‘Hospital’’ collection. The second

collection includes 260 E. coli clinical isolates collected from

various locations across the United States. Several of these iso-

lates were sequenced and analyzed in connection with the

Federal Drug Administration (FDA)-Center for Disease Control

and Prevention (CDC) Antimicrobial Resistance Bank (referred

to as the multi-drug resistant [MDR] collection) (Table S4). Anti-

biotic resistance phenotypes were available for several drugs

in both cohorts (Figure S7); of the two collections, the MDR

collection contains more multi-drug resistant organisms (Fig-

ure S7B). Phylogenetic analysis indicates that isolates from

both collections can be found in most major lineages (Figures

S7C and S7D).

We ran MGEfinder on both of the isolate collections and per-

formed an analysis to identify TE-insertion-enriched genomic sites

(Figure 7A). We compared the insertion-enriched sites in each

collection with the insertion-enriched sites found among the

randomly downloaded Sequence Read Archive (SRA) isolates.

We identified 9 insertion-enriched sites that replicated across

the MDR, Hospital, and/or randomly downloaded SRA collec-

tions. The acrR insertion-enriched site replicated across the two

clinical isolate collections (Figures 7A and 7B), again highlighting

the importance of disruption of this gene in a collection of anti-

biotic-resistant isolates. An insertion-enriched site near outer

membrane transporter icsA replicated between the hospital

collection and the randomSRA collection; insertion-enriched sites

near the outer membrane porin ompF (Figure 5A and 5C), DNA-

binding transcriptional activator cadC, and putative regulatory

protein mokB (upstream of methyl-accepting chemotaxis protein

trg) replicate between the MDR collection and the random SRA

collection (Figure 7A). Insertion-enriched sites near DNA dam-

age-inducible protein dinD, periplasmic protease ycaL, Bax1-I
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family protein ybhL, and putative acetate-CoA transferase ydiF

replicate between the hospital and MDR collections. We propose

that the effect of the MGE insertions within other sites should be

investigated further for functional significance.

The fact that these insertion-enriched sites replicate across

isolate collections and occur near genes involved in antibiotic

resistance indicates that MGE insertions confer important adap-

tations and are not merely sinks for random, functionally insignif-

icant insertions. The acrR and ompFmutations, for example, are

well-described antibiotic resistance mutations (Harder et al.,

1981; Jellen-Ritter and Kern, 2001), and the effect of the MGE

insertions within other sites should be investigated further for

functional significance.

Finally, we wanted to estimate the frequency of gene disrup-

tion by MGE insertion compared with other nonsense muta-

tions in MDR and Hospital isolate collections. We estimate

that 12.7% (95% CI, 13.7%–18.1%) and 16.9% (95% CI,

15.7%–18.1%) of nonsense mutations are caused by MGE

insertion in the hospital and MDR collections, respectively (Fig-

ures S7E and S7F). For acrR, 4 out of 17 (23.5%) and 8 out of 20

(40%) of nonsense mutations are mediated by MGE insertion in

the Hospital and MDR collections, respectively. For ompF,

0 out of 8 (0%) and 5 out of 16 (31.2%) of nonsense mutations

are mediated by MGE insertion in the Hospital and MDR collec-

tions, respectively. Altogether, these findings suggest that a

significant proportion of nonsense mutations are mediated by

MGE insertion in these clinical isolates and that the inclusion

of MGE insertion data are critical to any comprehensive muta-

tion analysis.

DISCUSSION

Genetic variation is produced by a variety of molecular mecha-

nisms, and measuring all types of variation is critical when trying

to understand how bacteria adapt and evolve. Here, we have pre-

sented MGEfinder, a sensitive and precise approach to genotyp-

ing large insertions from short-read sequencing datasets. We

applied this approach to an analysis of several thousand bacterial

isolates, identifying thousands of MGEs, and found MGE muta-

tional signatures that highlight genes involved in antibiotic

resistance.

As more isolates of a given species are analyzed, more MGE

insertions are identified, suggesting that many of these elements

are active in each of the species analyzed, although the level of

activity of these elements varies between organisms. Of note,

certain species, such as E. faecium, have particularly high

MGE insertional activity. This suggests that certain species

might rely more heavily on MGE movement as a mechanism of

adaptation and evolution than others.

Using MGEfinder, we identified insertion sequences, MITEs,

integrative plasmids, phage elements, transposons, integrons,

group II introns, and other classes of MGEs in this analysis.

Although some MGEs do not contain any coding sequence,

many of the MGEs we identified contained genes encoding

transposases as well as passenger genes coding for known

functions, such as antibiotic resistance genes. Interestingly,

many MGEs contained largely uncharacterized proteins, which

we anticipate might provide yet undescribed adaptive advan-

tages to the host bacterium. The passenger genes encoded in
these MGEs can spread rapidly between organisms, and selec-

tive forces likely affect the retention versus loss of these ele-

ments in individual organisms and in communities of organisms,

such as microbiomes. Indeed, recent work has demonstrated

that individuals with very similar gut microbiomes can harbor

very different MGE repertoires (Brito et al., 2016). This suggests

that monitoring the MGE potential of individual bacterial species

and microbiomes will inform our understanding of the extent of

and consequences of MGE-derived genetic variation.

Because MGEfinder allows us to both identify MGEs and their

insertion sites, we are able to find genes that are repeatedly ‘‘hit’’

by insertional mutagenesis, such as acrR, a gene involved in

sensitivity to many different antibiotics (Jellen-Ritter and Kern,

2001). Insertional loss of function of the gene is identified at a

high rate in E. coli, K. pneumoniae, and A. baumannii and likely

correlates with increased antibiotic resistance of these organ-

isms. In addition to identifying genes known to be involved in

antibiotic resistance, we identify additional genic ‘‘insertion-

enriched sites’’ that might represent genes involved in antibiotic

resistance and pathogenicity.

When we apply this method to previously published adaptive

laboratory evolution experiments on E. coli, we find that inser-

tions comprise a large proportion of the acquired mutations in

laboratory E. coli. By includingMGE insertions in these analyses,

the importance of acrR loss-of-function mutation as an adapta-

tion to antibiotics is enhanced, re-prioritizing these mechanisms

of resistance. Finally, we found that certain target sites appear to

be hit by specific IS elements. These sequence-specific transpo-

sases might have value in genetic engineering applications.

Thus, by identifying the locations where IS elements accumulate,

we can identify genes important for bacterial fitness and the

molecular specificity of transposase genes.

Although MGEfinder enables a detailed analysis of MGE inser-

tions, there are several limitations of this approach. First, the

inference approach used to identify large structural variants

has limited precision when elements cannot be fully assembled

in context by using short-read sequencing. With the advent of

more accessible read cloud and long-read sequencing ap-

proaches (Bishara et al., 2018; Nicholls et al., 2019), we antici-

pate that such inferences can be readily orthogonally validated.

Because our approach is based on comparative genomics, the

choice of reference genome can affect the analysis in various

ways. In this study, we chose a percent identity cutoff of

98.5% between all compared species, but others might choose

more lenient cutoffs, realizing sensitivity will be diminished. Also,

very small insertions (< 70 bp), large insertions (> 200 kbp), or in-

sertions that create large target site duplications (> 20 bp) were

not investigated in this study. We limited ourselves to only those

insertion events that do not already exist within the reference

genome, which emphasizes the role of more highly transposable

mobile elements and elements of probable horizontal origin,

potentially at the expense of more site-specific mobile elements.

Finally, although the identified associations between gene

disruption and antibiotic resistance are statistically significant,

the predictions that these genes are associated with true anti-

biotic resistance must be validated by orthogonal in vitro testing.

In conclusion, we have developed a sensitive and precise

approach to characterize a wide variety of MGEs and their

sites of insertion from short-read sequencing data. We have
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demonstrated the utility of this approach when analyzing large

publicly available datasets, experimental data, and clinical iso-

lates. Our analysis highlights the importance of thoroughly inves-

tigating MGE insertions in prokaryotic genomes. We anticipate

that applying our workflow to a wide variety of different bacterial

species will greatly enhance our understanding of MGEs and

their role in bacterial adaptation.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

All data used in this study was

public or generated in silico

for simulations.

NCBI Sequence Read

Archive (SRA)

See Table S4

Software and Algorithms

MGEfinder This study github.com/bhattlab/MGEfinder

SuperDeduper (v0.3.2) Petersen et al., 2015 github.com/dstreett/Super-Deduper

Trim Galore (v0.5.0) Krueger, 2015 www.bioinformatics.babraham.ac.uk/projects/trim_galore/

BWA MEM (v0.7.17-r1188) Li and Durbin, 2009 bio-bwa.sourceforge.net

Bowtie2 (2.3.4.3) Langmead and

Salzberg, 2012

bowtie-bio.sourceforge.net

emboss Rice et al., 2000 emboss.sourceforge.net

biopython python package Cock et al., 2009 biopython.org

FASTQC (v0.11.7) Andrews, 2010 www.bioinformatics.babraham.ac.uk/projects/fastqc/

panISa Treepong et al., 2018 github.com/bvalot/panISa

progressiveMauve Darling et al., 2010 darlinglab.org/mauve/user-guide/progressivemauve.html

dwgsim (v.0.1.11-3) Homer, 2017 github.com/nh13/DWGSIM

CD-HIT Fu et al., 2012 weizhongli-lab.org/cd-hit/

vegan R package (v2.5-3) Oksanen et al., 2011 cran.r-project.org/web/packages/vegan/index.html

prokka (v1.13) Seemann, 2014 github.com/tseemann/prokka

PopPUNK Lees et al., 2019 https://github.com/johnlees/PopPUNK

HOMER Heinz et al., 2010 http://homer.ucsd.edu/homer/

ISEScan Xie and Tang, 2017 github.com/xiezhq/ISEScan

ResFinder Zankari et al., 2012 cge.cbs.dtu.dk/services/ResFinder/

PHASTER Arndt et al., 2016 phaster.ca/

bedtools Quinlan and Hall, 2010 bedtools.readthedocs.io/en/latest/

DIAMOND Buchfink et al., 2015 github.com/bbuchfink/diamond

phytools (v0.6.44) Revell, 2012 cran.r-project.org/web/packages/phytools/index.html

FreeBayes Garrison, 2010 github.com/ekg/freebayes

ggtree R package Yu et al., 2017 https://doi.org/10.18129/B9.bioc.ggtree

snakemake Köster and Rahmann, 2012 snakemake.readthedocs.io/en/stable/

fastANI Jain et al., 2018 github.com/ParBLiSS/FastANI

SPAdes Bankevich et al., 2012 github.com/ablab/spades

hmmsearch Eddy, 2011 hmmer.org

ConjScan Abby et al., 2016 research.pasteur.fr/en/software/conjscan-t4ssscan/

Pilon Walker et al., 2014 https://github.com/broadinstitute/pilon/wiki

Other

PLSDB Galata et al., 2019 https://ccb-microbe.cs.uni-saarland.de/plsdb/

Toprak et al. Dataset Toprak et al., 2011 BioProject PRJNA274794

Baym et al. Dataset Baym et al., 2016 BioProject PRJNA259288

MDR Isolate Collection Multiple Sources BioProjects PRJNA278886, PRJNA288601, PRJNA292901,

PRJNA292902, PRJNA292904, PRJNA296771, and

PRJNA316321

Hospital Isolate Collection Stoesser et al., 2013;

Earle et al., 2016

BioProject PRJNA306133
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information regarding the data and code presented in this study is available through the LeadContact, Ami S. Bhatt (asbhatt@

stanford.edu). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study was a computational analysis of existing bacterial isolates and datasets. This included sequencing data downloaded at

random from the NCBI SRA database, the study performed by Baym et al. (2016), the study performed by Toprak et al. (2011), the

MDR E. coli isolate collection, and the Hospital E. coli collection (Earle et al., 2016). See Table S4 for additional details.

METHOD DETAILS

Data Sources, Preprocessing, and Quality Control
All of the data analyzed in this study were downloaded directly from public databases. The datasets are divided into three categories

for clarity: (1) Randomly selected Illumina short-read datasets of bacterial isolates, (2) Short-read E. coli sequencing datasets gener-

ated by Baym et al. and Toprak et al. for adaptive laboratory evolution experiments (Toprak et al., 2011; Baym et al., 2016), and (3)

Clinical E. coli isolate collections with antibiogram data. The sample selection, preprocessing, and quality control for each dataset is

described below.

Randomly Selected Short-Read Data - Sample Selection, Preprocessing, Quality Control
The Sequence Read Archive (SRA) SQL database was downloaded on Sep. 25th, 2018. Potential sequencing datasets were filtered

initially by available metadata to only include those samples with an estimated coverage between 50-150x per isolate, and only

including samples annotated as paired-end, whole-genome sequencing samples.

In simulations, as the genetic distance between the simulated samples and the reference genome increases, both sensitivity and

precision are reduced. To maintain high performance across samples, it was necessary to choose a reference genome that was

closely related to the randomly downloaded SRA samples. All complete genomes were downloaded from the NCBI RefSeq database

for each of the nine species of interest. The tool PopPUNK was used to rapidly estimate the core genome distances between the

reference genomes (Lees et al., 2019). This distance matrix was clustered by the k-means clustering algorithm, and the genomes

closest to the center of each cluster were chosen. 100-200 randomly downloaded isolates from each species were aligned to all

of these selected genomes and the relevant NCBI reference genome. Quality control filters were applied, and all genomes with a

genetic distance greater than 0.015mutations per covered bpwere removed. According to simulations, this cutoff should put a lower

bound on the overall sensitivity of MGEfinder at around 0.85. Reference genome(s) that resulted in a high number of downloaded

isolates meeting the quality filters were chosen. The final reference genomes used are: Escherichia coli NCTC9084 (NCBI Reference

Sequence: NZ_LR134075.1), Pseudomonas aeruginosa PAO1 (NCBI Reference Sequence: NC_002516.2), Neisseria gonorrhoeae

RIVM0610 (NCBI Reference Sequence: NZ_CP019466.1), Neisseria meningitidis M22811 (NCBI Reference Sequence:

NZ_CP016654.1), Staphylococcus aureus subsp. aureus LGA251 (NCBI Reference Sequence: NC_017349.1), Enterococcus fae-

cium E7933 (NCBI Reference Sequence: NZ_LR135384.1), Mycobacterium tuberculosis GG-137-10 (NCBI Reference Sequence:

NZ_CP025606.1), Klebsiella pneumoniae subsp. pneumoniae ATCC 43816 KPPR1 (NCBI Reference Sequence: NZ_CP009208.1),

and Acinetobacter baumannii strain XH856 (NCBI Reference Sequence: NZ_CP014541.1).

Up to 2000 samples for each species of interest were randomly selected and downloaded. The reads in the downloaded FASTQ

files were deduplicated using SuperDeduper v0.3.2 (Petersen et al., 2015) and adaptor sequences were trimmed using Trim Galore

v0.5.0 (Krueger, 2015). Samples were then aligned to their respective reference genomes using BWA MEM v0.7.17-r1188 (Li and

Durbin, 2009). Sampleswere excluded if theymet the following filters: greater than 0.015mutations per covered bp,median coverage

less than 40, estimated average read length less than 95 or greater than 305, estimated average fragment length less than 150 or

greater than 750, a FASTQC v0.11.7 ‘‘Per base sequence quality’’ quality control failure, a FASTQC ‘‘Per sequenceGC content’’ qual-

ity control failure, and a FASTQC ‘‘Per base N content’’ failure (Andrews, 2010). Those sequence isolates that passed these filtering

steps were analyzed further to identify MGEs and their sites of insertion.

Baym et al. and Toprak et al. Datasets - Sample Selection, Preprocessing, Quality Control
Baym et al. and Toprak et al. datasets were downloaded from the NCBI Sequencing Read Archive (Bioproject accessions

PRJNA259288 andPRJNA274794, respectively) (Baymet al., 2016; Toprak et al., 2011). Sampleswere processed by removing dupli-

cate sequences using SuperDeduper v0.3.2 (Petersen et al., 2015) and adaptor sequences were trimmed using Trim Galore v0.5.0

(Krueger 2015). The Baym et al. and the Toprak et al. short-read sequences were aligned to the E. coliK12U00096.2 and NCBI Refer-

ence Sequence: NC_000913.2 reference genomes, respectively, as was done in the original studies.

Clinical E. coli Isolate Collections with Antibiogram Data - Sample Selection, Preprocessing, Quality Control
Two collections of pathogenic clinical E. coli isolates were used in this study. The first is referred to as the Hospital collection as it

represents E. coli isolates collected at a single hospital, the Oxford University Hospitals NHS Trust. This included 241 isolates in total,
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all of which were bacteremia samples. They were downloaded from the NCBI database by querying all E. coli samples in BioProject

PRJNA306133.

The second collection, referred to in this study as the Multi-Drug Resistant (MDR) collection, includes 260 isolates collected from

multiple BioProjects, including PRJNA278886, PRJNA288601, PRJNA292901, PRJNA292902, PRJNA292904, PRJNA296771, and

PRJNA316321 (See Table S4). Most of these isolates come from the projects PRJNA278886 (173 isolates, Antimicrobial Surveillance

from Brigham &Women’s Hospital, Boston MA) and PRJNA288601 (52 isolates, CDC’s Emerging Infections Program (EIP)). Antibio-

grams were collected for samples from NCBI using the search key term ‘‘antibiogram[filter].’’ This collection represents samples

taken from several locations throughout the country as part of many pathogen surveillance programs. They were isolated from a va-

riety of sources, including 70 isolated from blood, 142 isolated from urine, and 27 isolated from other sources.

Samples were processed first by removing duplicate sequences using SuperDeduper v0.3.2 (Petersen et al., 2015), and adaptor

sequences were trimmed using Trim Galore v0.5.0 (Krueger 2015). All isolates from both collections were then aligned to both the

E. coli NCTC9084 genome (NCBI Reference Sequence: NZ_LR134075.1) and the E. coli FDAARGOS_144 (NCBI Reference

Sequence: NZ_CP014111.1). The NCTC9084 reference genome was used when making comparisons between these collections

and the randomly downloaded SRA collection, and the FDAARGOS_144 reference genome was used otherwise. BWA MEM was

used for alignments (Kathiresan et al., 2014), with default settings in paired-end mode.

MGE Identification Workflow
A combination of several previously published tools and custom tools, detailed below, were used to identify MGE insertions and their

sequence from short-read sequencing data. This pipeline is summarized in five steps: (1) Identifying the candidate insertion sites, (2)

inferring the complete sequence of the inserted element, (3) inferring sequences from a dynamically constructed database, (4) clus-

tering elements across isolates and (5) assigning final insertion genotypes to isolates.

Identifying the Candidate Insertion Sites
This step is fully implemented in theMGEfinder software package under the find command. The approach taken to identify candidate

insertion sites was developed independently but is similar to one taken recently by another group who published their tool under the

name panISa (Treepong et al., 2018). First, the alignment is parsed to identify sites where reads are clipped according to the BWA

MEM alignment software, filtering out reads with a mapping quality less than 20 (min_alignment_quality parameter) or those that are

clipped on both sides and have an alignment length less than 21 bps (min_alignment_inner_length parameter). Second, clipped sites

where the longest clipped end falls below a total length of 8 are excluded (min_softclip_length parameter). Third, clipped sites that

have fewer than 2 supporting reads in total are excluded (min_softclip_count parameter). Fourth, sites that are not within 22 bps of an

oppositely oriented read clipped site are excluded (min_distance_to_mate parameter).

In the next step, information about the un-clipped reads overlapping each of the candidate insertion sites is calculated. This is an

important quality control step that filters out small indels, which commonly cause false positives. First, reads at the insertion site are

classified as clipped reads, reads containing small insertions near the insertion site (small insertion reads), reads containing large

insertions near the insertion site (large insertion reads), reads containing deletions near the insertion site (deletion reads), and reads

that completely span the insertion site (run through reads). Small insertion reads are defined as those reads that contain insertions

smaller than 30 bps (large_insertion_cutoff), and large insertion reads are those reads with insertions that exceed 30 bps. Clipped

reads and large insertion reads are used to support the existence of an insertion, and small insertion reads and deletion reads are

used to filter out sites that are likely small insertions or deletions. Sites where the ratio of the insertion-supporting reads to total reads

falls below a value of 0.15 are excluded (min_softclip_ratio parameter). Then sites where the ratio of the deletion reads plus small

insertion reads to the total number of reads at the site exceeds 0.03 are then excluded (max_indel_ratio parameter). This is repeated

for deletions located at the base pairs directly adjacent to the insertion site. These filters were identified largely by iterative attempts to

optimize sensitivity and precision, and could be further improved in the future. The result of this step is a filtered list of candidate sites.

With this filtered list of candidate sites, consensus sequences for the termini of the inserted element at each site are determined. It

is possible to observe two distinct terminal sequences at a single site, and an approach that could filter out poor quality reads to pro-

duce a high-quality consensus was taken. The clipped ends are first added to a trie data structure. All of the unique paths from the

parent node to the leaves are traversed, resulting in a list of unique sequences seen at an individual site. These sequences are then

clusteredwith each other in a pairwisemanner by truncating the longer sequence to the length of the shorter sequence, and by calcu-

lating a similarity metric as the edit distance divided by the total length of the shorter sequence. This matrix of similarity scores is then

analyzed to identify all connected components, with connections existing between all sequences with a similarity greater than 0.75.

Each component of sequences forms its own cluster, and this cluster is then analyzed to determine a consensus sequence.

Next, a consensus sequence for a cluster of sequences is constructed by traversing down the trie data structure and taking the

base with the highest average quality score at each level of the trie as the consensus. The trie structure is traversed until only until

one read supports a given site, and the consensus sequence is terminated at this point. Consensus sequences that fall below 8 bps in

length (min_softclip_length parameter) and that have fewer than 4 clipped ends supporting their existence (min_softclip_count

parameter) are excluded, and themost well-supported consensus sequence is chosen as the representative. Finally, the list of candi-

date sites are filtered again to only include sites that are not within 22 bps of an oppositely oriented read clipped site (min_distance_

to_mate parameter).
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These candidate sites are then paired with other sites that are within a specified distance and oriented in the opposite direction

using the MGEfinder command pair. These oppositely oriented termini are allowed to be up to 20 bases away from each other,

as many MGEs create a target site duplication upon insertion. Since many MGEs, such as IS elements, have terminal inverted re-

peats, termini that share inverted repeats near their termini are prioritized. Ties are then broken first by pairing termini that have similar

number of supporting clipped reads, and then by the difference in the length of the consensus sequences. If ties still exist, the pairs

are randomly assigned to each other, but this is a rare occurrence. If no terminal inverted repeats exist between any of the pairs, then

only the number of clipped reads and the difference in consensus sequence length are used to pair insertion termini.

The Baym et al. data included several isolates that were sequenced at low coverage (less than 20). To increase sensitivity for

these low-coverage samples, the consensus sequence at each site was built from all available clipped reads by setting the

min_count_consensus parameter to 1, and a minimum consensus length of 4 was used (min_softclip_length parameter).

Inferring the Complete Sequence of the Inserted Elements
Once candidate terminus pairs have been identified, the next step is to infer the full inserted element. This approach combines a

variety of methods for inferring the identity of each insertion. The approach taken is described here in detail.

First, the identity of the inserted sequence is inferred from the assembly of the sequenced isolate using the inferseq-assembly com-

mand inMGEfinder. For each pair of termini identified, each terminus is aligned to the assembly using 25 bases of genomic sequence

context for each terminus in single-end mode (Figure S1A). If these consensus termini with genomic sequence context align to the

assembled isolate with the proper orientation, one can assume with high confidence that the intervening sequence is the complete

inserted sequence. This sequence is described as ‘‘inferred from assembly with full context.’’ If only one terminus aligns with context,

and the other partially aligns to the edge of the same assembled contig, this sequence is described as ‘‘inferred from assembly with

half context.’’ These are the highest quality inferred sequences, and they are prioritized above all others when genotyping an

insertion.

Next, termini are aligned to the assembly without any context sequence. Often, these termini align to small assembled fragments,

with short parts of the terminal ends being clipped off at the ends of the assembled contig. The full sequence is inferred by including

the clipped terminal ends, and the full intervening sequence (Figure S1B).

The next approach to infer the sequence identity is implemented in the inferseq-overlap command of MGEfinder. This infers the

identity of the sequence by attempting to find high-confidence overlaps between the two termini. This can only identify inserted

elements that can be spanned by the two termini, which makes it a good option for identifying smaller insertions.

Next, termini are aligned to the reference genome using the inferseq-reference command, and inserted sequences are inferred in a

similar manner to those inferred from assemblies without sequence context (Figure S1C). At each of these sequence inference steps,

all candidate insertions where the alignment scores of both termini are equally high are returned. For example, if a given IS element is

found in multiple locations throughout the reference genome, all of these locations will be reported as inferred elements (Figure S1E).

Only inferred elements between 30 bps and 200 kbps are returned in each of these inference steps (min_inferseq_size and

max_inferseq_size).

Inferring Sequences from a Dynamically-Constructed Element Database
All of these inferred elements can then be combined into a single FASTA database using the makedatabase command. This

step generates a database of elements that is filtered by 99 percent nucleotide similarity using CD-HIT-EST (Li and Godzik, 2006;

Fu et al., 2012).

This final sequence inference approach, implemented in the MGEfinder package as the inferseq-database command, is similar to

the sequence inference approaches implemented in the MGEfinder commands inferseq-assembly and inferseq-reference, but with

two differences: aminimumpercent identity of the aligned termini of 90% (as opposed to the 95%minimum identity required for other

inference commands), and the requirement that the aligned termini map within 10 bases of the true termini of each element in the

database to be considered a candidate for the inserted element at a given position (max_edge_distance parameter). This serves

as the most sensitive inference approach of all, but the results depend on how the query database is constructed and should not

be considered to be especially high-quality relative to other methods of sequence inference.

Clustering Elements across Isolates
This next step is performed using the clusterseq command inMGEfinder. At this point in the pipeline, thousands of insertion positions

have been identified, and the exact identity of those insertions could be any number of hundreds of different inferred sequence

elements. Much of this information is surely redundant, however, as the differences between elements may amount to a few nucle-

otide variations. To collapse this small level of heterogeneity, sequences were clustered using CD-HIT-EST at 90% similarity across

85%of each sequence (Li andGodzik, 2006; Fu et al., 2012). For example, if elements X and Y are found at position A in the reference

genome in two different isolates, it is assumed that elements X and Y are in essence the same sequence if they cluster at 90% sim-

ilarity across 85% of their sequence, and it is assumed they are different elements otherwise. At this step, only elements between

70 bps and 200 kbps are kept by default (min_inferseq_size and max_inferseq_size). The lower cutoff could be reduced to 30 bps

under certain conditions (see Figure S2E), but to ensure sufficient sensitivity to detect all elements in the size range of interest,

we used a lower cutoff of 70 bps.
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This step results in two different elements set, which are referred to as element ‘‘clusters’’ and element ‘‘groups.’’ Element clusters

include those sets of inferred elements that meet sequence similarity cutoffs as calculated by CD-HIT-EST above. Element groups

are sets of element clusters that occasionally cannot be distinguished from each other at the inference step. For example, if 10 unique

elements are inferred across the inferseq commands for a given insertion, theymay be clustered byCD-HIT-EST to produce 2 distinct

element clusters, Cluster1 and Cluster2. Because these two element clusters are indistinguishable at this insertion site, they both

become members of a single element group, referred to as Group1. If at a different insertion site, Cluster2 and Cluster3 are inferred

together, then Cluster3 is also added to Group1. In this sense, for a given insertion there may be some ambiguity at the level of

element cluster, but there will never be ambiguity at the level of element group. It should be noted that the strand orientation of

the inserted element is ignored in this analysis. For example, if element X was inserted at position A in isolate 1, and was also inserted

at position A in isolate 2 but with the reverse orientation, this will be considered an identical genotype. These two different element

sets can be used for different tasks at the discretion of the researcher, depending on the level of ambiguity that is considered accept-

able for the task at hand.

Assigning Final Insertion Genotypes to Isolates
Once elements were filtered by size and organized into clusters, insertions in all isolates are assigned a final genotype using the

genotype command. Insertions are assigned to element clusters by prioritizing the results of the inferencemethods. Element clusters

inferred from ‘‘assembly with full context’’ are given first priority, those inferred from ‘‘assembly with half context’’ are given second

priority, those inferred from ‘‘overlap’’ are given third priority, those inferred from ‘‘assembly without context’’ are given fourth priority,

and both those inferred from ‘‘dynamically constructed database’’ and those inferred from the reference genome given fifth and

lowest priority.

In the next step, we seek to resolve ambiguous position-cluster assignments. Even after clustering elements and assigning clusters

to insertion sites in thismanner, ambiguities may exist. If the ends of two different elements are very similar to each other, and yet they

do not cluster together at the 90% similarity threshold, a given insertion may have mapped to both of these clusters. It is important

that these ambiguities are sufficiently resolved for many of the analyses conducted in this study.

First, the number of non-ambiguous positions within the reference genome where each element cluster is found are counted. This

is first done for only insertions that are inferred from the isolate’s assembly with sequence context, the highest confidence set. If a

given cluster is found at more than two of these high-confidence insertion positions, it is classified as a ‘‘high-confidence MGE.’’

These requirements are then relaxed to include all non-ambiguous position-cluster assignments, the next highest confidence set,

and all clusters that are found at more than one position in the reference genome are classified as ‘‘low-confidence MGEs.’’

Next, ambiguous element assignments are counted. The ambiguous element assignments are first resolved by calculating the fre-

quency of each cluster at each position within our collection of isolates and assigning the ambiguous insertion to the most frequent

cluster at that position. For example, if an ambiguous insertion at position A in isolate 1maps to both clusters X and Y, and throughout

the population cluster X is found more frequently than cluster Y at position A, then cluster X is assumed to be the correct assignment

at position A in isolate 1.

Finally, if any ambiguous position-cluster assignments remain, they are then resolved by prioritizing ‘‘high-confidence

MGEs’’ described above. Our assumption is that if the insertion at position Amaps to both clusters X and Y, and X is anMGEwhereas

Y is not, then position A is assigned to cluster X. If any ambiguous position-cluster assignments remain after this step, clusters are

assigned using the ‘‘lenient MGEs.’’ If a given insertion is still ambiguous, it is left in as an ambiguous insertion, but still considered in

analyses where cluster ambiguity is irrelevant.

As a final quality control measure, elements that are never successfully inferred from the sequence assembly of any analyzed

isolate are removed (filter-clusters-inferred-assembly parameter). This should reduce the number of false-positives that are inferred

from the reference genome by chance. In some cases, such as when analyzing ALE experiment sequencing data, the sequences

inferred from the reference genomemay be considered high-quality, and this filter can be disabled (no-filter-clusters-inferred-assem-

bly parameter).

Simulations of Key Steps in the Pipeline
To test the sensitivity and precision of our pipeline, we carried out various simulations. Here we demonstrate that the candidate inser-

tion identification and sequence inference steps are both sensitive and precise. The sequences used for the simulations were: Es-

cherichia coli NCTC9084 (NCBI Reference Sequence: NZ_LR134075.1), Pseudomonas aeruginosa PAO1 (NCBI Reference

Sequence: NC_002516.2), Neisseria gonorrhoeae RIVM0610 (NCBI Reference Sequence: NZ_CP019466.1), Neisseria

meningitidis M22811 (NCBI Reference Sequence: NZ_CP016654.1), Staphylococcus aureus subsp. aureus LGA251 (NCBI Refer-

ence Sequence: NC_017349.1), Enterococcus faecium E7933 (NCBI Reference Sequence: NZ_LR135384.1), Mycobacterium

tuberculosis GG-137-10 (NCBI Reference Sequence: NZ_CP025606.1), Klebsiella pneumoniae subsp. pneumoniae ATCC 43816

KPPR1 (NCBI Reference Sequence: NZ_CP009208.1), and Acinetobacter baumannii strain XH856 (NCBI Reference Sequence:

NZ_CP014541.1). For each genome, the mutation rate, coverage, and library read length were combinatorially selected and ten rep-

licates of each combination of parameters were carried out. A total of 32 MGE insertions were simulated per isolate by randomly se-

lecting insertion sites, using 16 species-specific IS elements downloaded from ISfinder and chosen at random, and 16 randomly

generated sequences of lengths 30, 70, 100, 200, 300, 400, 500, 1000, 2000, 5000, 10000, 50000, and 200000 bps in length. We

simulated four mutation rates (0.001, 0.005, 0.01, and 0.02 mutations per bp, with 10% of mutations being indels) using DWGSIM
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v.0.1.11-3 (https://github.com/nh13/DWGSIM). Theses simulations included various genome coverages (5, 10, 20, 40, 60, 80, and

100x), and various read lengths (100, 150, 300 bp), and reads were aligned to genomes in paired-end mode with BWAMEM (Kathir-

esan et al., 2014). In total, this resulted in 840 simulated genomes per species. ANOVA tests implemented in R were used to analyze

which factors influence sensitivity and precision. The MGEfinder tool was run on these simulated samples with the default

parameters.

For comparison, these simulated genomes were also analyzed with panISa, and the results were compared directly to those of

MGEfinder. The parameters used for panISa were chosen to most closely reflect the MGEfinder default parameters, and included

setting the minimum number of clipped reads to predict an insertion to 2 using the"minimun" parameter.

In Figures S2A–S2D and S2F–S2H, the sensitivity and precision curves shown are based on whether or not the recovered termini

are found near the expected insertion site, with termini being considered true positives if they are 90% similar to the termini of the true

inserted elements. Similarity here is calculated as the edit distance divided by the length of the terminus. Additionally, other sequence

inference techniques implemented in MGEfinder were tested to determine their sensitivity (Figure S2E).

MGEfinder was also compared to the progressiveMauve algorithm, a commonly used tool to identify genomic islands (Figures S2I

and S2J). For each of the 9 species, 10 of the insertion simulations performed at a mutation rate of 0.01 with 300 bp reads were

assembled using SPAdes. These simulated assemblies were then used to compare the ability of MGEfinder to progressiveMauve,

including comparing the sensitivity of recovery of repetitive insertions, non-repetitive insertions, and the improvement in sensitivity

achieved when sharing insertion information across isolates using MGEfinder.

Unique Insertion and Elements Accumulation Curves
A unique insertion is defined as a specific element group assigned to a specific insertion position. Element groups are used rather

than element clusters (See ‘‘Clustering elements across isolates’’) to prevent the double-counting of sites with ambiguously assigned

element clusters. Using the unique insertions that were identified, the number of new insertions identified as additional samples were

analyzed was calculated. The ‘‘specaccum’’ function provided by the vegan package v2.5-3 was used to estimate the accumulation

curve for these insertions (Oksanen et al., 2011). The ‘‘random’’ method was used to estimate the curve, with 100 permutations.

These same steps were repeated for different element types (Figure S4).

Calculating Rare TE Insertions per Megabase
For each species, the number of rare TE insertions per megabase of covered genome was calculated. A transposable element (TE) is

defined as any element withmore than three predicted insertion sites within the reference genome in sumacross all analyzed isolates.

The allele frequency of each insertion was calculated by dividing the number of isolates where the insertion is observed by the total

number of isolates analyzed for the species. This list was then filtered to only include insertions with an allele frequency less than 0.01

(1% of isolates), and we then calculated the number of such rare insertions per isolate. The number of megabases for each sample

with non-zero read coverage was then calculated by analyzing the alignment files for each isolate, and the number of rare variants

per isolate was divided by this number of megabases. This was repeated for rare TE insertions falling in both intergenic and coding

regions (Figure S5).

The ANI between each isolate and its respective reference genome was calculated using fastANI (Jain et al., 2018), as well as the

ANI between all pairs of isolates for each species. The average pairwise ANI for each isolate compared to all other isolates analyzed

for the species was calculated. This tool failed for 312 isolates (2.5% of total) due to low contiguity (N50) of their respective assem-

blies. As a proxy for these draft assemblies, the reads for these isolates were aligned to their respective reference genomes, and

those reference genomes were corrected to contain all of the same SNPs and indels as the isolate. Regions in the reference that

had zero coverage or were unmappable were then masked. Using these corrected reference genomes with fastANI produced

good estimates of the ANI for these isolates. An ANOVA model including species, reference ANI, average pairwise ANI, sequencing

library read length, sequencing library fragment length, and median depth of coverage as groups were used to understand how each

covariate related to the rate of rare TE insertion.

Annotating Identified Elements
All identified elements were annotated using the Prokka v1.13 annotation software (Seemann 2014). This approach uses a rapid hi-

erarchical approach to classify proteins, with the databases being derived from UniProtKB. Default settings were used, with the

exception of the added flags ‘‘–kingdom Bacteria’’ and ‘‘–metagenome’’. The ‘‘metagenome’’ flag was used to improve prediction

of genes in short contigs. All unique identified elements were annotated, not just the cluster representatives.

Transposases are poorly annotated using the Prokka annotation pipeline, and they are often described only as ‘‘hypothetical’’ pro-

teins, so a different approach to identify potential transposases was necessary. The profile hidden Markov models (pHMMs) con-

structed by the creators of the ISEScan software were used to identify potential transposases (Xie and Tang, 2017), using Prokka

predicted proteins as inputs. All such proteins with e value < 10-4 were considered to be transposases. We designated an element

as an IS element if it only coded for predicted transposases.

The ResFinder web portal was used to identify antibiotic resistance genes (Zankari et al., 2012). The PHASTER URL API was used

to predict which elementswere considered intact, questionable, or incomplete phages (Arndt et al., 2016).We designated an element

as a phage only if the predicted phage boundaries exceeded 85% of the length of the element. We ran BLAST on elements with the

PLSDB plasmid database to determine which elements were plasmids (Galata et al., 2019), and only designated an element as a
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plasmid if the BLAST alignments covered 85% of both elements and nucleotide identity exceeded 90%. Element clusters that con-

tained predicted terminal inverted repeats (TIRs) at least 8 bp in length in at least 10%of cluster members were classified as elements

with TIRs.

We assigned each element to a single category in the following order. If an element was a predicted IS element, it was assigned to

the ‘‘IS element’’ category. If an element was a predicted intact phage, it was assigned to the ‘‘Intact Phage’’ category. If an element

was either a questionable or an incomplete phage, it was assigned to the ‘‘Questionable/Incomplete Phage’’ category. If an element

contained a predicted transposase and additional predicted non-transposase CDS regions, it was assigned to the ‘‘Transposase +

CDS’’ category. If an element contained a gene with a predicted Group II Intron protein domain (matching pHMM TIGRFAMs:

TIGR04416 at e-value < 1e-4), it was assigned to the ‘‘Group II Intron’’ category. If an element contained a gene with a predicted

serine/tyrosine recombinase domain (matching HMM profiles Pfam: Arm-DNA-bind_1, Pfam: Phage_int_SAM_1, Pfam: Phage_int_

SAM_5, Pfam: Phage_integrase, Pfam: Recombinase, Pfam: Resolvase, TIGRFAMs: TIGR02224, TIGRFAMs: TIGR02225, or Pfam:

Zn_ribbon_recom at e-value < 1e-4), it was assigned to the ‘‘Serine/Tyrosine Recombinase’’ category. If an element contained other

CDS regions and TIRs, it was assigned to the ‘‘Contains CDS + TIR’’ category. If an element did not contain any predicted CDS re-

gions but it did contain TIRs, it was assigned to the ‘‘No CDS + TIR’’ category. If an element contained non-transposase CDS regions

but no TIRs, it was assigned to the ‘‘Contains CDS’’ category. If an element contained noCDS regions and no TIRS, it was assigned to

the ‘‘No CDS’’ category.

It should be noted that these categories were forced to be mutually exclusive, and that in reality these elements categories can

overlap. Many predicted phages carry serine recombinases, for example. Additionally, elements containing conjugation systems

were identified using ConjScan (Abby et al., 2016) through the Galaxy web server (Afgan et al., 2016). An element was considered

to carry a conjugation system if it contained a predicted mobilization protein (MOB), a coupling protein (T4CP), and VIRB4, the

only ubiquitousmember of type IV secretion systems. The approach taken to identify recombinases, group II introns, and conjugation

systems was inspired by a previous study (Jiang et al., 2017).

Identifying a Set of High-Confidence Mobility Genes
Prokka predicted genes in all identified elements were analyzed to identify a set of high-confidence mobility genes. All predicted pro-

teins across species were clustered at 50% similarity using CD-HIT (Fu et al., 2012), using the same parameters that are used to clus-

ter theUniRef50 database (Suzek et al., 2015). These protein clusters were assigned to a DNA element cluster if they appeared in over

75% of all unique sequences in the cluster. The number of unique sites (within and across species) where each protein cluster was

found was calculated. All protein clusters that appeared in over 10 unambiguous sites were considered ‘‘mobility genes.’’ Mobility

genes includemany different elements, including transposases, recombinases, and phage-related proteins. For the purposes of Fig-

ure 3A,mobility geneswere designated as ‘‘Transposases’’ if the ISEScan HMMprofiles identified them as such (Xie and Tang, 2017).

Mobility genes were designated as ‘‘phage-related proteins’’ if they were not predicted transposases, and if they appeared in pre-

dicted phage sequences a plurality of the time. Mobility genes were designated as a ‘‘Group II intron protein’’ or ‘‘Recombinase’’ if

they had significant HMMprofilematches to domains of these proteins (e-value < 1e-4). Mobility genes were designated as a ‘‘Conju-

gation system protein’’ if they had a significant match to an HMM profile curated by ConjScan (Abby et al., 2016). Genes were

described as ‘‘Other annotated’’ if Prokka assigned the genes to a described gene in their database. Geneswere described as having

‘‘unknown function’’ if Prokka only predicted them to be hypothetical proteins with no assigned function. This set of high-confidence

mobility genes was then used as markers to further characterize identified elements.

Describing MGEs with Annotated Passenger Genes
Figure 3Cwas generated to summarize the annotated passenger genes that were containedwithin predictedMGEs. If anymember of

a given element cluster was found to contain an annotated gene, then the entire cluster was predicted to contain the identified gene.

The number of insertion sites where the predicted MGE at the specified site contained the annotated gene of interest was calculated.

The passenger genes that appeared at the most unique locations throughout each organism’s genome (excluding those found in

phage elements) are presented in Figure 3C.

Annotating Reference Genomes
To ensure comparable and consistent gene-calling among different isolates, each organism’s reference genome was annotated us-

ing Prokka v1.13 used with default settings. The gene names identified by Prokka were used to describe genes in Figures 4A and 7A

(Table S6).

Analysis of Insertion-Enriched Sites
Regions of the genome with high numbers of unique insertions are described in this study as insertion-enriched sites. The approach

taken here resembles approaches taken by ChIP-seq peak calling algorithms, such asMACS (Feng et al., 2012). All unique insertions

found throughout each organism’s genomes were extracted. Sliding windows of 500 bps, with 50 bp steps, were created across

each organism’s genome. The number of insertions found within each window was calculated using bedtools (Quinlan and Hall,

2010). To determine if a given windowwas enriched for insertions, a Poisson distribution was used tomodel the insertion distribution,

with a dynamic parameter llocal. This parameter is calculated as
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llocal = maxðlBG; l1kbp; l10kbpÞ
where the term lBG describes the estimated rate of insertion calculated across the entire genome, l1kbp is the estimated rate of

insertion within 1 kbp of the window being tested (500 bases on either side of the window), and l10kbp describes the estimated

rate of insertion within 10 kbp of the window being tested. The estimated value of llocal is then used in a one-sided exact Poisson

test to determine if the observed insertion rate for the window exceeds the expectation, using the ‘‘poisson.test’’ function in R.

Adjusted for the local insertion rate, this should account for biases in the local insertion rate, identifying windows that are significant

above this background level.

Significant insertion-enriched sites were then calculated as windows that met FDR % 0.05. Once these significant insertion-en-

riched sites were identified, overlapping insertion-enriched sites were merged into single regions. These insertion-enriched sites

were then associated with nearby genes. This was done by first restricting the edges of each insertion-enriched site to begin and

end at the exact site of the first and last insertions that they contain, effectively tightening the region edges to directly surround their

insertions. The center point of each region was calculated and used to associate this region with the nearest gene. This resulted in a

list of significant insertion-enriched sites associated with specific genes in the reference genome.

Insertion-Enriched Sites near Homologous Genes within and across Species
To determine if homologous genes within and across species were found near MGE insertion-enriched sites, all protein sequences

that were mapped to insertion-enriched sites previously were extracted. These proteins were then clustered using the CD-HIT algo-

rithm at 40% sequence identity across 70% of the sequence. If protein sequences clustered with each other across species, they

were considered cross-species insertion-enriched sites. If multiple protein sequences near insertion-enriched sites from the same

species clustered with each other, they were considered within-species insertion-enriched sites.

Insertion-Enriched Site Gene Ontology Enrichment Analysis
This approach was taken to determine if the genes near insertion-enriched sites were enriched for any particular function. Gene

ontology (GO) terms were used for this purpose. To map genes to gene ontology terms, the Prokka-predicted protein sequences

were mapped to the UniRef90 database (Suzek et al., 2015) using DIAMOND (Buchfink et al., 2015) with an e-value cutoff of 10-5,

choosing the top result as the representative. The database identifier mapping (‘Retrieve/ID mapping’) service provided by UniProt

was used to map the IDs of each protein to all other proteins that clustered at the level of UniRef90, and then mapped these proteins

to the GO terms associated with them in the UniProt database. In other words, the GO terms associated with each annotated protein

include all of those assigned to it or any homologs that clustered with it in the UniRef90 database. All of the coding sequences near an

insertion-enriched site were taken, and enriched GO terms were identified using the hypergeometric test, with all proteins with at

least one GO term of any type used as a background. Only GO terms containing five or more genes, with two or more of these genes

being found near an insertion-enriched site, were tested. A significance cutoff of FDR% 0.05 was used to determine significant GO

enrichments.

Target-Sequence Motif Discovery
The HOMERmotif analysis tool was used to identify target-sequence motifs for MGEs with 10 or more different insertion sites (Heinz,

2010). HOMER findMotifsGenome.pl was executed with the default parameters, and searched for motifs of size 4, 6, 8, 10, and 12

within the reference of genome of each species. Randomly selected sequences from the reference genome were used as back-

ground sequences. All de novo motifs that met a p value cutoff of 1e-12 were reported, choosing the most significant motif for

each MGE.

Analysis of Baym et al. Megaplate Experiment Sequencing Data
The large insertions found in the sequenced isolates from the intermediate-step trimethoprim megaplate experiment conducted by

Baym et al. were analyzed. This included 231 sequenced isolates in total; of note, the sequenced isolates had widely varying

sequence coverage. The sample sequencing coverage was calculated as the median sequencing coverage across the entire

genome. Across all 231 isolates, the median isolate was covered by 19 reads, with 31% of isolates having median coverage of

less than 15, and 5.6%being covered at a genome-widemedian coverage of 0. Aswas done in the original publication, all sequenced

isolates were analyzed, including these low-coverage samples, to see if any insertions could be identified. But it should be noted that,

due to low coverage, not all insertions in all samples could be identified. This range of sequencing coverage may explain some of the

unexpected patterns of inheritance observed in Figure 6A.

The samples in this experiment were analyzed with the complete insertion identification workflow. If an isolate was found to have

coverage lower than 20, more lenient parameters were used by MGEfinder to identify insertions (See Identifying candidate inser-

tion sites).

Baym et al. (Baym et al., 2016) inferred the pattern of inheritance fromwatching a video recording of themigrating bacterial front as

it grew across the megaplate. Their visually inferred phylogeny was used to determine how many independent insertions occurred

across all sequenced samples in this re-analysis of their data. In most cases, the inferred relationships between isolates was accu-

rate; however, in a subset of cases, it appears that the inferred relationships between isolates were inaccurate. Thus, rather than
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relying completely on the given phylogeny, the number of independent insertions was estimated conservatively. A visualization of the

independent insertion events that were identified is provided in Figure S6.

Analysis of Toprak et al. Morbidostat Experiment Sequencing Data
Data from the trimethoprim, chloramphenicol, and doxycycline morbidostat experiments conducted by Toprak et al. were re-

analyzed in this study. This included 20 samples in total, with 5 replicates per experiment, the wild type reference, and four additional

samples that represented four additional colonies that grew fromplating three of the replicates. All samples were covered at amedian

coverage between 21 and 30, suggesting that there was sufficient sensitivity to detect most insertions in all samples. These samples

were sequenced using a single-end sequencing approach, which MGEfinder was able accommodate with some minor changes in

the workflow.

These samples were analyzed using the same workflow used in the previous megaplate analysis, with a minimum clipped read

count of 4 to support each insertion site. Independent mutations were identified and cross-referenced with genome annotations

to determine the genes that were most likely impacted by each insertion. It should be noted that Toprak et al. (Toprak et al.,

2011) were very stringent when initially calling SNPs and indels from their datasets, requiring validation by Sanger sequencing.

The IS insertions found in this study were not subject to the same strict standards of evidence.

Inferring Ancestral States and Identifying Independent IS Mutation Events in Clinical Isolates
Using the insertions identified in the Hospital and MDR collections, we sought to infer the ancestral state of each insertion to deter-

mine the number of independent insertion events. The phylogenetic tree was rooted using an Escherichia fergusonii isolate, and

multitomies were randomly resolved. The rerooting method developed by Yang et al. (Yang et al., 1995) was used through the ‘‘re-

rootingMethod’’ in the R package phytools, version 0.6.44. This technique uses maximum likelihood to estimate the marginal ances-

tral state for each node in the phylogenetic tree. We initialized isolate states for each insertion, with ambiguous states being assigned

to any isolate where we did not detect the insertion and the number of reads at either the 50 or 30 clipped site being less than 10. After

running this method, any node with a marginal probability of insertion greater than 0.5 was considered to contain the insertion.

We then sought to quantify how many times a given gene was disrupted by an independent insertion. For all of the insertions that

overlapped with a given gene, we traversed the tree upward from each leaf node with at least one insertion until we reached a node

whose parent was predicted to not have an insertion in that gene. We then used the total number of such intermediate nodes as

the estimate for the number of independent insertions in that gene within the isolate collection. In the event that two insertions exist

in the same gene in a single isolate, the approach would only count this as a single insertion event, since one event or the other would

have been the initial nonsense mutation.

For genes disrupted by insertions and/or nonsensemutations, the aimwas to infer which of the twomutations occurred first ances-

trally. This was done using the same phylogenetic inference approach we used to identify independent insertions, but we also

included other nonsense mutations identified by the SNP calling tool FreeBayes (Garrison andMarth, 2012). For each gene disrupted

by anMGE insertion or other nonsensemutation, we traversed up the phylogenetic tree until we reached a nodewhose parent had no

predictedMGE insertion or nonsensemutation. If themutation at that nodewas found to be anMGE insertion, it was considered to be

mutated initially by a MGE insertion, and likewise for other nonsense mutations. The proportion of genes disrupted by MGE insertion

compared to other nonsense mutations was then calculated and visualized in Figure S7E.

QUANTIFICATION AND STATISTICAL ANALYSIS

All details of statistical analysis and software can be found in the method details, which we summarize here briefly. Statistical ana-

lyses were all conducted in the R programming language. Rarefaction curve analysis was done using the vegan package in R. For the

rare TE insertion analysis, ANOVA was used to determine how species, average nucleotide identity (ANI) to reference, average pair-

wise ANI to population, sequencing read length, sequencing depth, and sequencing fragment length influenced the number of rare

TE insertions detected for each species. Analysis of insertion-enriched sites was carried out using a procedure that was similar to

MACS2 ChIP-seq peak caller. Briefly, a dynamic p value was calculated for each window of unique insertions using the Poisson dis-

tribution as a null, with the expected rate being the maximum rate of nearby genomic windows, or the whole genome. All p values

were adjusted using FDR correction across all tested genomic windows. Enrichment of insertion-enriched sites near Gene Ontology

pathways was performed using two-sided hypergeometric tests.

DATA AND CODE AVAILABILITY

The MGEfinder command-line toolbox is hosted on GitHub at https://github.com/bhattlab/MGEfinder. A detailed README and test

dataset are included. The toolbox and all dependencies can be installed using conda (https://anaconda.org/mdurrant/mgefinder).
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